1. The Basic Approach

(1) The current evacuation orders implemented by the government consist of:
 1) Orders to evacuate or prepare to evacuate with the aim of securing a certain distance from the nuclear power station, based on unstable conditions in the NPS (Evacuation-Prepared Area in Case of Emergency, Restricted Area), and
 2) Orders to evacuate with the aim of reducing the impact of radiation based on the fact that the cumulative dose received by residents in the 1 year following the accident is estimated to exceed 20mSv (Deliberate Evacuation Area).

(2) Since these evacuation orders have a huge impact on residents' lives, it would be proper to speedily reassess them in the event of major changes to the reasons they are based on, such as verified safety of nuclear reactor facilities and better understanding of dose decrease through the accumulation of detailed monitoring data.

(3) Such a reassessment will be carried out:
 1) following a safety assessment of the nuclear reactor facility and determination of how much distance should be secured from the NPS,
 2) once it has been verified through detailed monitoring of radiation dose within the Area whether the safety of residents has been secured or not, and
 3) when the restoration of everyday life environment for the residents, including public services and infrastructure, can be foreseen in the not-too-distant future.

(4) In the coming days, area-designation reassessment will take place incrementally in those areas that meet the above conditions 1) through 3), and residents will begin the homecoming process. However, the process is also likely to highlight the existence of areas for which homecoming will prove challenging for the long term, due
to reasons such as ongoing risk even following NPS stabilization (such as the impact of the reactor decommissioning process on the surrounding environment) and a significantly high dose.

We hope to explore a long-range response measure for these areas, through ample discussion with local governments on the form that such long-range rebuilding measures should take.

(5) In every area that saw dispersal of radioactive contamination from this accident, including both areas planned for lifting the instruction of evacuation orders and those planned for longer-term continuation, anxiety regarding radiological damage is growing daily, necessitating bold measures.

In order to respond to this need, a basic decontamination policy will be put together, before the end of August if at all possible, and thorough, ongoing decontamination implemented in partnership with relevant parties.

In terms of long-range goals, the aim is to keep additional radiation exposure below 1mSv annually, and implement measures with even greater speed, in particular for children, for whom the impact of radiation is greater than for adults.

2. Exploring the lifting the instruction of the Evacuation-Prepared Area in Case of Emergency

(1) The situation in the nuclear power plant has improved significantly with the recent completion of Step 1. Based on this, the possibility of lifting the instruction of the Evacuation-Prepared Area in Case of Emergency was explored as the first stage. Specifically, the following were assessed:

1) The possibility of a hydrogen explosion
2) The possibility as well as the effects of a reactor cooling failure (fuel heat-up, fuel melting and concrete reaction)
3) The possibility of a cooling failure for the spent fuel pool
4) The possibility of damage to the spent fuel pool due to earthquakes and tsunamis
5) The impact of radioactive materials which continue to be released by the reactors in steam and other forms

The assessment result validated the lifting the instruction of the
Evacuation-Prepared Area in Case of Emergency, in terms of reactor safety.
These assessment results were also reported to the Nuclear Safety Commission.

(2) In addition to regular monitoring such as the distribution map of radiation doses, monitoring was implemented on schools and public facilities in accordance with “The Radiation Monitoring Action Plan for Homecoming, regarding Evacuation-Prepared Areas in Case of Emergency” and in response to individual requests from municipalities. This means that the Evacuation-Prepared Areas in Case of Emergency are basically safe, as verified in terms of air dose rate.

(3) Area safety verification will continue in the future, through means such as additional monitoring in response to municipal requests. Municipalities themselves are asked to take into account the wishes of the residents and work with the prefecture to start drafting a Restoration Plan that responds to the unique realities of the area, and that covers aspects such as facilitation of a smooth relocation for residents, resumption of public services such as education and medical facilities, restoration of public infrastructure, and decontamination of schoolyards.

(4) The idea is to lift the instruction of all the Evacuation-Prepared Area in Case of Emergency at same time on a national level, once every municipality has carefully considered and finalized its Restoration Plan.

The municipalities in Evacuation-Prepared Areas in Case of Emergency run the gamut from areas where the entire village has been evacuated to areas where almost every resident has already returned home, and the actual homecoming timing is expected to vary widely from municipality to municipality.

The national government will provide the necessary support for homecoming, taking into account the individual municipality's evacuation situation, the existence of infrastructural restoration measures, the state of public service resumption, the progress of decontamination, and the residents' wishes, staying respectful of the individual municipality's wishes.
3. The Response in Restricted Areas and Deliberate Evacuation Areas

(1) In the future, the Japanese government as well as TEPCO will spare no effort to implement Step 2, bringing the release of radioactive materials under control and achieving a massive curb of radiation doses, through a transition to reactor cold shutdown, further stabilization of fuel pool cooling, and overall reduction in the volume of contaminated water.

(2) Ongoing assessment will be conducted on reactor facility safety and other aspects as the above tasks proceed. At the same time, there will be proactive exploration of the impact on the surrounding environment following NPS stabilization, such as in the course of post-Step 2 reactor decommissioning, with regular, ongoing and helpful information updates.

(3) The possibility (or not) of downsizing Restricted Areas and reassessing Deliberate Evacuation Areas will be explored after proceeding with these assessments and explorations and completing Step 2, once the release of radioactive materials has been brought under even tighter control through measures such as the achievement of reactor cold shutdown.

(4) Detailed radiation dose monitoring and other efforts aimed at restoration of the everyday life environment of the residents will go ahead, without waiting for the completion of Step 2.

(5) Specifically, thorough monitoring such as 2km-mesh air dose survey and soil concentration mapping will be implemented, to gain a detailed understanding and assessment of the dose status in Restricted as well as Deliberate Evacuation Areas. Also, in addition to promoting efficient and effective decontamination including the development of decontamination methods, work aimed at restoring the habitation environment will be implemented, such as rubble removal, and damage surveys and restoration of public infrastructure including waterworks, sewer systems, and electricity and gas lines.

(6) These explorations and undertakings will be carried out in close partnership with the local government involved, taking into account the realities of each locality and staying respectful of the views of individual areas.